Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

M. V. N. de Souza,^a Solange M. S. V. Wardell,^a James L. Wardell,^b John N. Low^c and Christopher Glidewell^d*

^aInstituto de Tecnologia em Fármacos, Far-Manguinhos, FIOCRUZ, 21041-250 Rio de Janeiro, RJ, Brazil, ^bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, ^cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

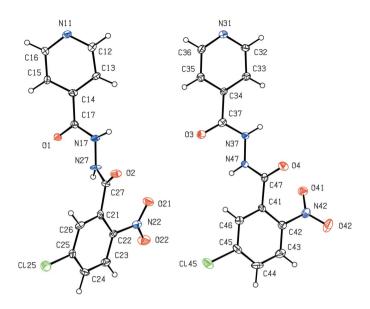
Single-crystal X-ray study T = 120 KMean $\sigma(\text{C-C}) = 0.008 \text{ Å}$ R factor = 0.051 wR factor = 0.102Data-to-parameter ratio = 8.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-(5-Chloro-2-nitrobenzoyl)-N'-isonicotinoyl-hydrazine: a three-dimensional framework containing four types of hydrogen bond

The title compound, $C_{13}H_9ClN_4O_4$, crystallizes with Z'=2, and the two molecules have markedly different conformations. The molecules are linked into a three-dimensional framework by a combination of $N-H\cdots O$, $N-H\cdots N$, $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds.

Received 4 December 2006 Accepted 4 December 2006


Comment

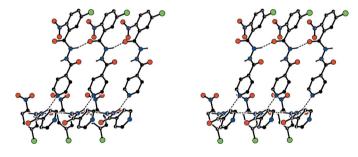
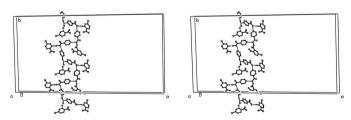
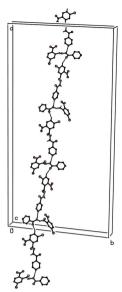
We have recently reported the supramolecular structures of 4-[(4-chloro-3-nitrobenzoyl)hydrazinocarbonyl]pyridinium chloride and *N*-3,5-dinitrobenzoyl-*N'*-isonicotinoylhydrazine (Vasconcelos *et al.*, 2006). These compounds were prepared as part of a programme to test bactericidal activities, especially towards the Mycobacterium tuberculosis bacterium. Both compounds were found to exhibit significant activities (Junior *et al.*, 2006). The structure of a third member of this series, *N*-(5-chloro-2-nitrobenzoyl)-*N'*-isonicotinoylhydrazine, (I) (Fig. 1), is reported here.

Compound (I) crystallizes with Z' = 2 in space group Fdd2, with a unit cell of markedly tabular shape, as shown by the axial ratios a:b:c of 1.958:1:0.134, so that the ratio c/a is only 0.0686. The two independent molecules adopt significantly different conformations, as shown by the leading torsion angles (Table 1).

The molecules of (I) are linked by a combination of four types of hydrogen bond (Table 2) to form a fairly complex three-dimensional framework, whose formation is nonetheless

© 2007 International Union of Crystallography All rights reserved

Figure 1The structures of the two independent molecules of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

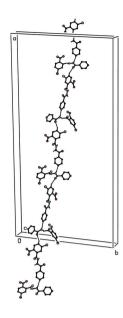

Figure 2 A stereoscopic view of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded (dashed lines) chain of $R_4^4(26)$ rings generated by translation along [001]. For the sake of clarity, the unit-cell outline and H atoms bonded to C atoms have been omitted.

Figure 3 A stereoscopic view of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded (dashed lines) $C_2^2(14)$ chain along $[01\overline{1}]$. For the sake of clarity, H atoms bonded to C atoms have been omitted.

readily analysed in terms of three distinct substructures. Within the selected asymmetric unit, the two molecules are linked by an $N-H\cdots N$ hydrogen bond, possibly weakly augmented by a $C-H\cdots N$ hydrogen bond, and these bimolecular units are linked by two $N-H\cdots O$ hydrogen bonds into

Figure 4 A stereoscopic view of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded (dashed lines) $C_2^2(17)$ chain along [107]. For the sake of clarity, H atoms bonded to C atoms but not involved in the motif shown have been omitted.

a chain of edge-fused $R_4^4(26)$ (Bernstein *et al.*, 1995) rings generated by translation along the [001] direction (Fig. 2). In the second substructure, the bimolecular units are linked by the second N-H \cdots N hydrogen bond, in which atom N37 at (x, y, z) acts as donor to atom N11 at $(\frac{3}{4} - x, -\frac{1}{4} + y, \frac{1}{4} + z)$, so forming a $C_2^2(14)$ chain running parallel to the [01 $\overline{1}$] direction and generated by the *d*-glide plane at x = 0.375 (Fig. 3). This chain may be weakly reinforced by a second C-H \cdots N hydrogen bond. In the final substructure, atom C44 at (x, y, z) acts as hydrogen-bond donor to atom O1 at $(\frac{1}{4} + x, \frac{3}{4} - y, \frac{7}{4} + z)$, so forming a $C_2^2(17)$ chain running parallel to the [107] direction and generated by the *d*-glide plane at y = 0.375 (Fig. 4). The combination of the [001], $[01\overline{1}]$ and [107] chains is sufficient to generate a single three-dimensional framework structure.

Experimental

5-Chloro-2-nitrobenzoyl chloride was prepared from the corresponding carboxylic acid (1 g) using thionyl chloride (3 molar equivalents) and N,N-dimethylformamide (0.1 equivalent) in dichloromethane (20 ml) at ambient temperature with stirring and in a dinitrogen atmosphere. After 6 h, the excess of thionyl chloride was removed under reduced pressure to leave the crude acyl chloride, which was used without purification in a reaction with isonicotinoylhydrazine (isoniazid, 1 molar equivalent) in refluxing tetrahydrofuran (20 ml). The mixture was then cooled and the solvent removed under reduced pressure. The crude solid product, (I), was purified by column chromatography on silica gel, using as eluant a hexane–ethyl acetate gradient. Recrystallization from ethanol gave crystals suitable for single-crystal X-ray diffraction [yield 75%, m.p. 543–545 K (decomposition)]. GC/MS m/z 320 $[M]^+$.

organic papers

Crystal data

 $\begin{array}{lll} {\rm C_{13}H_{9}ClN_{4}O_{4}} & Z = 32 \\ M_{r} = 320.69 & D_{x} = 1.562 \ {\rm Mg \ m^{-3}} \\ {\rm Orthorhombic}, \textit{Fdd2} & {\rm Mo} \ \textit{K}\alpha \ {\rm radiation} \\ a = 67.786 \ (4) \ \mathring{\rm A} & \mu = 0.31 \ {\rm mm^{-1}} \\ b = 34.613 \ (2) \ \mathring{\rm A} & T = 120 \ (2) \ {\rm K} \\ c = 4.6486 \ (2) \ \mathring{\rm A} & {\rm Needle, \ colourless} \\ V = 10906.9 \ (10) \ \mathring{\rm A}^{3} & 0.20 \times 0.04 \times 0.02 \ {\rm mm} \end{array}$

Data collection

Bruker Nonius KappaCCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.955$, $T_{\max} = 0.994$

16346 measured reflections 3383 independent reflections 2656 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.104$ $\theta_{\rm max} = 22.5^{\circ}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.102$ S = 1.053383 reflections 397 parameters H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0289P)^{2} + 24.7113P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.22 \text{ e Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.23 \text{ e Å}^{-3}$ Absolute structure: Flack (1983), with 1344 Friedel pairs
Flack parameter: 0.08 (10)

Table 1 Selected torsion angles (°).

C12-C13-C14-C17	-179.9 (5)	C32-C33-C34-C37	-179.6 (5)
C13-C14-C17-N17	27.6 (7)	C33-C34-C37-N37	2.7 (8)
C14-C17-N17-N27	176.5 (4)	C34-C37-N37-N47	176.3 (4)
C17-N17-N27-C27	-149.8(5)	C37-N37-N47-C47	-128.3(5)
N17-N27-C27-C21	169.8 (4)	N37-N47-C47-C41	-179.6(4)
N27-C27-C21-C22	73.2 (7)	N47-C47-C41-C42	120.7 (5)
C21-C22-N22-O21	14.6 (7)	C41-C42-N42-O41	-32.2(7)

 Table 2

 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N17—H17···N31	0.88	2.22	3.039 (6)	156
C13-H13···N31	0.95	2.56	3.448 (7)	156
$N27-H27\cdots O2^{i}$	0.88	1.86	2.737 (6)	171
$N47-H47\cdot\cdot\cdot O4^{ii}$	0.88	1.93	2.777 (6)	160
$N37-H37\cdots N11^{iii}$	0.88	2.07	2.908 (6)	159
C33-H33···N11 ⁱⁱⁱ	0.95	2.55	3.476 (7)	165
$C44-H44\cdots O1^{iv}$	0.95	2.30	3.164 (7)	151

Symmetry codes: (i) x, y, z - 1; (ii) x, y, z + 1; (iii) $-x + \frac{3}{4}, y - \frac{1}{4}, z + \frac{1}{4}$; (iv) $x + \frac{1}{4}, -y + \frac{3}{4}, z + \frac{7}{4}$.

All H atoms were located in difference maps and then treated as riding, with C–H = 0.95 Å and N–H = 0.88 Å, and with $U_{\rm iso}({\rm H})$ = 1.2 $U_{\rm eq}({\rm C,N})$. The unit-cell dimensions posed some difficulties during the data collection, and there was effectively no scattering beyond θ = 22°

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *OSCAIL* (McArdle, 2003) and *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *OSCAIL* and *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PRPKAPPA* (Ferguson, 1999).

The X-ray data were collected at the EPSRC National Crystallograpic Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq for financial support.

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Junior, I. N., Lourenco, M. C. S., de Mirandal, G. D. B., Vasconcelos, T. R. A., Pais, K. C., Junior, J. D. D., Wardell, S. M. S. V., Wardell, J. L. & de Souza, M. V. N. (2006). Lett. Drug. Des. Disc. 3, 424–428.

McArdle, P. (2003). *OSCAIL for Windows*. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Vasconcelos, T. R. A., de Souza, M. V. N., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). *Acta Cryst.* C62, o222–o226.